Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mutat ; 42(2): 177-188, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33259687

RESUMO

The MT-TL1 gene codes for the mitochondrial leucine transfer RNA (tRNALeu(UUR) ) necessary for mitochondrial translation. Pathogenic variants in the MT-TL1 gene result in mitochondriopathy in humans. The m.3250T>C variant in the MT-TL1 gene has been previously associated with exercise intolerance and mitochondrial myopathy, yet disease classification for this variant has not been consistently reported. Molecular studies suggest the m.3250T>C variant does not alter tRNALeu(UUR) structure but may have a modest impact on aminoacylation capacity. However, functional studies are limited. Our study aimed to further define the clinical presentation, inheritance pattern, and molecular pathology of the m.3250T>C variant. Families with the m.3250T>C variant were recruited from the Mitochondrial Disease Clinic at Cincinnati Children's Hospital Medical Center and GeneDx laboratory database. Affected individuals most frequently presented with cardiac findings, exercise intolerance, and muscle weakness. Hypertrophic cardiomyopathy was the most frequent cardiac finding. Many asymptomatic individuals had homoplasmic or near homoplasmic levels of the m.3250T>C variant, suggesting the penetrance is incomplete. Patient-derived fibroblasts demonstrated lowered ATP production and increased levels of reactive oxygen species. Our results demonstrate that the m.3250T>C variant exhibits incomplete penetrance and may be a possible cause of cardiomyopathy by impacting cellular respiration in mitochondria.


Assuntos
Cardiomiopatias , Genoma Mitocondrial , Miopatias Mitocondriais , Cardiomiopatias/genética , Criança , DNA Mitocondrial/genética , Humanos , Miopatias Mitocondriais/genética , Mutação , RNA de Transferência de Leucina/química , RNA de Transferência de Leucina/genética , Fatores de Risco
4.
Proc Natl Acad Sci U S A ; 115(51): 13039-13044, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30478036

RESUMO

Although there has been considerable debate about whether paternal mitochondrial DNA (mtDNA) transmission may coexist with maternal transmission of mtDNA, it is generally believed that mitochondria and mtDNA are exclusively maternally inherited in humans. Here, we identified three unrelated multigeneration families with a high level of mtDNA heteroplasmy (ranging from 24 to 76%) in a total of 17 individuals. Heteroplasmy of mtDNA was independently examined by high-depth whole mtDNA sequencing analysis in our research laboratory and in two Clinical Laboratory Improvement Amendments and College of American Pathologists-accredited laboratories using multiple approaches. A comprehensive exploration of mtDNA segregation in these families shows biparental mtDNA transmission with an autosomal dominantlike inheritance mode. Our results suggest that, although the central dogma of maternal inheritance of mtDNA remains valid, there are some exceptional cases where paternal mtDNA could be passed to the offspring. Elucidating the molecular mechanism for this unusual mode of inheritance will provide new insights into how mtDNA is passed on from parent to offspring and may even lead to the development of new avenues for the therapeutic treatment for pathogenic mtDNA transmission.


Assuntos
DNA Mitocondrial/genética , Genes Mitocondriais , Herança Materna , Mitocôndrias/genética , Doenças Mitocondriais/genética , Herança Paterna , Adulto , Pré-Escolar , Bases de Dados Genéticas , Feminino , Genoma Mitocondrial , Humanos , Padrões de Herança , Masculino , Pessoa de Meia-Idade , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...